This article will be one of an ongoing series -- as I have time to write them. I've spent the better
part of this past weekend and this week focusing on game hacking. The target was an old classic,
Age of Empires II: The Conquerors.

E 200 of i . | h.A

00:01:18 {Fast} {Standard}

It is an old 2D RTS game where you build up an empire, build armies, make/break alliances, and
so on. For a much more in-depth explanation than I care to provide see the Wikipedia article on
its predecessor. One of the interesting things that I discovered while messing around with this
game is that the statistics (all resource/villager/military/... counts, current age, population, etc)
counts are stored in a structure that is indexed into for the appropriate player. This wouldn't be
too interesting as a single player game, but Age of Empires is a multiplayer game, with a semi-
big community of around 1200 active players. The same base classes/structures are shared
between Al bots and active players, meaning there are no modifications to be made between
single and multiplayer, in terms of hack development.

Finding the stat structure started off normally, by using Cheat Engine to search for the type of
variable the player's resources were stored in, and what was writing to it. Doing the usual things
like building/destroying buildings, collecting resources, and making units yielded a wide variety
of results. In the end, there were multiple candidates for where values are being written from, but
they were narrowed down to a very good function at .text:00555470.

0055546a — fadd dword ptr [EaxEt+edz=*d]

N055546d — lea esax. [eaxE+edz#*d]
*»»00555470 — f=tp dword ptr [sax]

N0555472 — mov sax. [ecE+04]

NNS55475 — test eax.eax

This is good candidate because the floating point stack is being utilized, and it was the only one
like it that popped up when dropping resources off at the town center. Looking actively into this
function yields clues about how it works. The important parts are reproduced below.

.text:0055544F mov eax, [ecx+0A4dh]
.text:00555455 movsx edx, si
.text:00555458 cmp edx, eax
.text:0055545A jge loc_5554FE
.text:00555460 mov eax, [ecx+0A8h]
.text:00555466 fld [esp+4+arg_4]
.text:0055546A fadd dword ptr [eax+edx*4]
.text:0055546D lea eax, [eax+edx*4]
.text:00555470 fstp dword ptr [eax]
.text:00555472 mov eax, [ecx+4]
.text:00555475 test eax, eax
.text:00555477 jz loc_5554FE

This function is very interesting because it is a __thiscall and does not set up any sort of bp-
based stack frame. ECX here is used without being initialized (hint for __thiscall) and the
arguments are also referenced directly through the stack pointer. This is where the static code
analysis ends though, and a debugger needs to be attached to follow exactly how everything
behaves. OllyDbg happens to be one of the best for live code analysis.

HESEEGdE [« SEH1 HEEWEUEE| MUY EHR,, LWUBL F IR WE: LELE+HHS)
HESEE4E55(] o BFEFDG MOUSE EDA,SI
HHEEE4EE(] . SEDE CHP EDX, ERx

AAEEEACH) | .- AFE0 EBRARARA| JGE ao0c. ARSEL4FE
. 2B21 ASERGEEE| MO ERX, OWORD PTRE OS: CECH+AZ]

. D34424 @c FLD DWORD PTR 55:[ESP+C]

. D2a49E FADD DWORD PTR D5: [EAX+EDN#4]

» 20B49a LEA ERX,DWORD PTR DS: CEAR+EDx#4]
» 0218 FSTF _DOWOROD PTR DS5: [ERA]

. SB41 B4 MOV ERX, OWORD PTR D5:[ECR+4]
. BECHE TEST EAX,.EAX

BEEEEAY S| -BF24 218ARARA| JE aoc. ARSEE4FE
. GEIOEFE

BESEE4 7D TEST S1,51

BEEEE4SE | w7 12 JE SHORT aoc. BESE5494
pesEcdsz(| . 66:83FE @1 |CHP SI,1

posts4ge|| 74 Bc JE SHORT aoc.@@S55494

Breakpoints set, everything can be observed as this function gets called. When I created a unit,
the following values were in the registers when the first breakpoint hit.

Registers [FFUI

EAY HEEEEECE

ECx 183C72AA ASCII "Dzc™
EDy BEE88ER5A

EE¥ SF2@@ag0a

ESF @813037C

EEF HEEEEESEH

ESI 183CARSA

EDI H8888R5A

EIF BASSS460 aoc. AASSS460

Here ECX is the "this" pointer. It points to the base of the calling class. When the EIP is
0x0055546A, the application had the following state

Registers [(FFUI

ER: 18&2EEDH

ECx HBSCTSAE ASCII "Dzc™
ED BEAEEESE

EEX SF2BQ00E

ESF @813037C

EEF BEABEE5EH

ESI 182CEEER

EOI @8AREEER

EIF 8855546 aoc.AA55546H

C 1 ES @82B 22Zbit BIFFFFFFFF]
F 8 CI 8823 32bit BLFFFFFFFF)
H 1 55 882B 32bit ALFFFFFFFF]
£ @ D03 882E 32bit ALFFFFFFFF]
? é FS BE52 32bit FEFODDBAAIFFF]
0@
0@

G5 BE2B F2bit BIFFFFFFFF]

LastErr ERROF_SUCCESS (OOEEEEHEE1
EFL @@@aazsz (HO0,.E,ME,.EBE,S.FO.L.LE)

5TA walid 1.000EEEEABEEEEEEEEEE

5T1 emptw —7Y¥7? FFFF 1A191518 481388F1C
5T2 emptw —-MAM FFFF B&YA9EZ0D BEDEEEZS0
5T2 empty —7Y¢? FFFF BE80EEEAEH S2820A0E
5T4 empty A.H

STS emptw A.8

STE empty 1.3958333333333332598

STF empty 188, B8E088E80088008E0

1.0f was loaded into STO. However, when I dequeued a unit, -1.0f was loaded into STO. The
second parameter is therefore some sort of flag for whether a unit is being queued or dequeued.
This value is added to [EAX+EDX*4], and the result stored in the address that EAX points to.
Looking at what is inside [EAX] then yields what is more or less a holy grail.

S2-bit float

39549, 84

=24, 88888
a.6

B.6

8.6

1. Baa8EEA

183, a88a

8.6

66 . AAEEA

175, aEE

22, B8R
1. BaaEEE

8.6
1. BEEEEE

&
5 D R S R D D O

714a.

15. 888

oo ol o oo o ool fo oo o)

While the values may look nonsensical at first, this is actually a layout of a structure that holds a

ton of statistics about a player.

5. Baaa8a

.
ACED 0 D R o o D o D R o D D 5 D

742. 8

B

5]

25. 84
1. 684

ol oaloo o Lalolo oo loo e hololuloholohohololololoololo ol

EEEEEN"] EEEEENT]
8.8 .8

.8 29, Baaaa

8.8 @.a

.8 29, Baaaa

9. 194445 1682. 66868
8.8 8.8

SB8. A888 .8
a.a 1. caaaa8

8.8 178, 6888

.8 .8

B, 2B88888 1. BEEEEE
.8 .8

B.a8 .8

164, 8888 1. 0E8888
26, 83888 32088, a8
1. BEaaEEa 1. BEEEaaE
1. BEaaa:a .8
.8 @.a

6. 26688888 1. BEEAEE
8.8 2. Baaaas

8.8 1. 0e8888

4. BEAaa8 8.8
a.a a.a
TEEZ. 888 B.a
.8 .8

8.8 @.a

.8 14E. BAEE

8.8 B.a

8.8 8.8

8.8 8.8

a.a a.a

8.8 B.a

8.8 .8

.8 .8

8.8 B.a

8.8 8.8

8.8 8.8

a.a a.a

8.8 B.a

.8 .8

.8 .8

14E. BaE8 .8
8.8 B.a

8.8 8.8

25. 88888 8.8
a.a a.a

1. BEaaEE 26, Baaa8
8.8 .8

1.122448e—-42 2, B2EE45e—43

The first four members of this structure correlate to the players food, wood, stone, and gold.
Then comes the population left before hitting the cap, an unknown value, the current age, and so
on (see player_stats.h for my listings). These values can continue to be found by setting memory
breakpoints on an individual one or a region, followed by performing an action in the game and
observing what breakpoints are triggered. Since the base of this structure is a member of the
calling class, it can always be found at (base address of class + 0xAS8), as evidenced in the
disassembly of the function. Just looking at the base address of the class yields some interesting

information.

BEEEEIE2
1B3B7FFE
1823E488
1822E3ER
1823EZER
11088A%E8| ASCIT "Dic™
1 BEE32HE
B22733HE
16923538
18933628
11021848 ASCIT "gquerty™
AEEEAaAE1
aaaaaza1
BEEEEEACE
1823EA2E
BEEEE2EE
BRAEAAEE
BREEAAEEA
BEa8a888
AEEaaa88
1BCE7EEE

In addition to having pointers to some ridiculously large structures (possibly covered in the
future), the player's name is also listed at (base address of class + 0xAS8). Sidenote: The address
pointing to it is different since I started another game instance between taking the two
screenshots. This provides identifying information for each class that calls .text:00555470. Then
the theory is that if I hook .text:00555470, I can store all of the pointers to every player in the
game. This is true because this function is called by every player on the games start, and also
throughout the game. Using Microsoft's Detours library makes this extremely easy. The hook
function looks as follows

__declspec(naked) void resources_changed_hook (short int res_type, float
usage_type, int unused) {

__asm {
pushad
mov eax, temp_pointer
mov dword ptr[eax], ecx //temp_pointer—->base_pointer

points to calling class

}

temp_pointer->player_name = (char*) (* (temp_pointer->base_pointer + (0x98
/ sizeof (DWORD_PTR))));

temp_pointer->player_stat = (player_stats*) (* (temp_pointer->base_pointer
+ (0xA8 / sizeof (DWORD_PTR))));

if (insert (&base_pointers, temp_pointer) == true)

temp_pointer = (item_set*)HeapAlloc (GetProcessHeap(),

HEAP_ZERO_MEMORY, sizeof (item_set));

__asm {

popad

jmp resources_changed

The stack is preserved, the address of the calling class is stored, the offsets calculated and set,
and the calling function inserted into a set (no repetitions allowed).

The actual structure is a shell of the calling class and stores only the class pointer, the statistics
structure, and the players name

typedef struct ITEM_SET {
int* base_pointer;
char* player_name;

player_stats* player_stat;
ITEM_SET *next;
} item_set, *pitem_set;

This can/will all be expanded and redone as more of the calling class is reverse engineered. The
stored items can then be simply traversed like a list and the data for each player printed out.

void print(item_set** head) {

if (*head == NULL)
return;
item_set* node_ptr = *head;
while (node_ptr != NULL) {
printf ("Player: %s —-- Wood: %1.0f - Food %1.0f - Gold: %$1.0f - Stone:

$1.0f\n", node_ptr->player_name,
node_ptr->player_stat->wood, node_ptr->player_stat->food,
node_ptr->player_stat->gold, node_ptr->player_stat->stone);
node_ptr = node_ptr->next;
}
printf ("\n");

Here is an example of it in action:

5\ Statistics spy
Plaver: quwerty — UWood: 288 — Food 288 — Gold: 188 - Stone: 200

Player: Admiral Chang Bo—ko — YWood: 178 — Food 158 — Gold: 188 — Stone: 288
Plaver: GAIA — UWood: B — Food B — Gold: @ — Stone: @

Using this, a player is able to modify their own stats in addition to reading the stats of others.
Doing something like

while (node_ptr != NULL) {
if (strcmp ("gwerty", node_ptr->player_name) == 0) {
node_ptr->player_stat->food = 10000.0f;
break;
}
node_ptr = node_ptr->next;

Would work fine on single player. However, on multiplayer this would cause an out of sync
error. Since each player keeps a copy of the other players information in their game, any
unwarranted change would cause the game to go out of sync. However, simply reading memory
will still be fine. The player_stats structure consists of 198 members with roughly half of them
documented by me. Additional help is welcome.

Plaver: [#f8 — UWood: B — Food -1 - Gold: -1 - Stone: -1
ats — ood: @ — Food B — Gold: B - Stone: @
—— UWood: B — Food @ - Gold: B — Stone: B
Player & Rating A%eK — YWood: 2 — Food @ — Gold: B — Stone: 1
—— UWood: B — Food @ - Gold: B — Stone: B
4 Host —— Wood: @ — Food @ — Gold: @ - Stone: @
[[]]] [Emex1Comorv — UWood: 99999 — Food 99999 - Gold: 9999¢
P Grubyyyyyy — Wood: 79999 - Food 99999 — Gold: 997999
an Y [KEmex]Eltrino — UWYood: 99992 - Food 99999 - Gold: 999¢
b [tBw]1DoMlaLe — Wood: 99999 - Food 929999 — Gold: 2999¢
nmn Chippie2l — Yood: 99999 — Food 99999 - Gold: 99999 -
#rem — Wood: 79999 - Food 99999 — Gold: 99999 — Stone

nm Player: Uoooooocooooohly — Wood: 99999 - Food 99999 - Gold: 9¢
(][]

m Plaver: AugenRollen — WYWood: 99999 — Food 99999 - Gold: 99999
Player: GAIA — Wood: B — Food B - Gold: @ — Stone: A
][]

A screenshot from a CBA game at Voobly -- technique still holds.

Warning: The version posted here will result in a ban from Voobly. Their anti-cheat checks
functions for hooks and will ban any user found to be modifying the functions in memory. This
is still extremely easy to get around using hardware breakpoints and a different DLL injection
technique with no keyboard hook -- but that might be another part of this series. The risk takers
who are uninitiated with those topics may want to try to attach the hooks prior to an in-game
lobby launch and detach immediately upon entering the game to beat the anti-cheat scan. This is
definitely not recommended however. Also, the fact that it is in a separate window makes this
more of a proof of concept than an actual functional hack until further work/posts are done on
the game.

Possible future articles as time permits:

Hooking DrawTextA or DirectDraw functions to draw text on the screen
Reversing the protocol and packet structure

Bypassing Voobly's anti-cheat system (large hints given)

The source code to the hooking DLL can be found here.

A downloadable PDF of this post can be found here.

