
This part will focus on how to draw player stats on the game screen. One obvious advantage to

this over the previous article is that the player stats are directly in the game, thus there is no need

to alt-tab out or play in windowed mode to see what the other players have. Additionally, a

toggle feature will be added that allows the player to cycle through various modes to see

different types of statistics on the others. The first step is to find a place where either some text,

or more specifically, the players scores are drawn. The advantage to finding where the player

scores are drawn is that player statistics will be drawn in a natural location and that they can

correspond in color to the player. The first step is to think about how the player text is drawn on

screen. There is always the player name, a colon followed by a space, and two numbers with a

forward slash separating them. Searching for a format similar to this in the games referenced

strings leads to what could be the right path.

A string with our desired format is found, and some other interesting strings which hint to

drawing. Setting a breakpoint on where the "%s: %d/%d" string is referenced shows that it does

in fact relate to the players scores. The function that uses this is called on a timer continually to

update the players scores on the screen. The image below shows what values are loaded in

registers on the first and second call respectively.

The general gist of how the function works is that the player whose score is to be retrieved is

loaded into the EAX register. The function flow continues until the score is retrieved. The score

for the next player is retrieved while the string containing the name and score of the previous

player is drawn on the screen. The process then continues for the next player and restarts while

the game is active. Modifying the name on a call shows that this does indeed affect how the text

is drawn on the screen

This can then be taken advantage of to draw what we want. Tracing exactly where the name gets

drawn leads to the call from .text:0052107D.

.text:0052104C mov eax, [esp+350h+var_330]

.text:00521050 mov ecx, [esp+350h+var_340]

.text:00521054 mov edx, [esi+8]

.text:00521057 push eax ; int

.text:00521058 mov eax, [esi+4]

.text:0052105B push ecx ; int

.text:0052105C mov ecx, [esi]

.text:0052105E push ebx ; int

.text:0052105F push edi ; int

.text:00521060 push edx ; int

.text:00521061 mov edx, [esp+364h+var_31C]

.text:00521065 push eax ; int

.text:00521066 mov eax, [esp+368h+var_318]

.text:0052106A push ecx ; int

.text:0052106B push edx ; int

.text:0052106C mov edx, [esp+370h+var_338]

.text:00521070 lea ecx, [esp+370h+Str1]

.text:00521077 push eax ; int

.text:00521078 push ecx ; Str1

.text:00521079 mov ecx, [edx]

.text:0052107B push 5 ; int

.text:0052107D call sub_54A510

Immediately after this routine completes, the text is drawn on the screen. The function has 11

arguments, the second one being the player name, and third being the RGB value of the player.

For the purpose of developing this portion of the hack, the other arguments are irrelevant and

probably relate to the position on the screen where the text is to be drawn if I had to take a guess.

The idea then is to hook .text:0054A510, grab the stats for the players name, modify the resulting

string (which will be in "%s: %d/%d" format) to our custom string, and then pass this back to the

original function to be drawn on the screen. The resulting code would look like

__declspec(naked) int score_update_hook(int always_five, char *player, int

rgb_value, int unk1, int unk2,

 int unk3, int unk4, int unk5, int unk6, int unk7, int unk8) {

 __asm pushad

 char *name; //Placeholder for address of name buffer

 __asm {

 mov ebx, dword ptr[esp+0x28]

 mov name, ebx

 }

 stats = items_find_by_name(&base_pointers, name);

 if(stats != NULL) {

 if(toggle_option == CURRENT_RES)

 _snprintf(name, SCORE_MAX_LENGTH, "W:%1.0f F:%1.0f G:%1.0f

S:%1.0f\0",

 stats->player_stat->wood, stats->player_stat->food, stats-

>player_stat->gold,

 stats->player_stat->stone);

 else if(toggle_option == ALL_RES)

 _snprintf(name, SCORE_MAX_LENGTH, "W:%1.0f F:%1.0f G:%1.0f

S:%1.0f\0",

 stats->player_stat

>total_food_gathered,

 stats->player_stat

>total_stone_gathered);

 else if(toggle_option == POP_AGE)

 _snprintf(name, SCORE_MAX_LENGTH, "Pop: %1.0f/%1.0f Vil:%1.0f

Mil:%1.0f Age:%1.0f\0",

 stats->player_stat

+ stats->player_stat->pop_left),

 stats->player_stat

>num_military, stats->player_stat

 }

 __asm {

 popad

 jmp score_update

 }

}

The actual structure of the function is abused a bit here. Since .text:0054A510 has no local

variables, we can create one on the stack at [EBP

overwrite there. This dummy argument will act as our third argument at [ESP+0x28] (this

function does not set up any sort of BP

argument will be reflected as a change to

name of who is to be updated, gets their stats, and checks what mode the user wants to be

displayed. The modes are currently controlled through a regular enum in toggle_options.h

typedef enum TOGGLE_OPTIONS {

 CURRENT_RES = 1,

 ALL_RES,

 POP_AGE

} toggle_options;

Future plans can be to extend this system to allow the user to script their own format to be

displayed with what they want. This technique still holds on multiplayer, as shown by the

screenshots below.

>player_stat->total_wood_gathered, stats->player_stat

>player_stat->total_gold_gathered, stats->player_stat

else if(toggle_option == POP_AGE)

me, SCORE_MAX_LENGTH, "Pop: %1.0f/%1.0f Vil:%1.0f

>player_stat->pop_current, (stats->player_stat-

>pop_left),

>player_stat->num_villagers, stats->player_stat

>player_stat->current_age);

The actual structure of the function is abused a bit here. Since .text:0054A510 has no local

variables, we can create one on the stack at [EBP-0x4], since there won't be anything to

overwrite there. This dummy argument will act as our third argument at [ESP+0x28] (this

function does not set up any sort of BP-based frame). Then anything we do to this dummy

argument will be reflected as a change to the third parameter. Thus, the hook grabs the player

name of who is to be updated, gets their stats, and checks what mode the user wants to be

displayed. The modes are currently controlled through a regular enum in toggle_options.h

TIONS {

Future plans can be to extend this system to allow the user to script their own format to be

displayed with what they want. This technique still holds on multiplayer, as shown by the

>player_stat-

>player_stat-

me, SCORE_MAX_LENGTH, "Pop: %1.0f/%1.0f Vil:%1.0f

->pop_current

>player_stat-

The actual structure of the function is abused a bit here. Since .text:0054A510 has no local

0x4], since there won't be anything to

overwrite there. This dummy argument will act as our third argument at [ESP+0x28] (this

based frame). Then anything we do to this dummy

the third parameter. Thus, the hook grabs the player

name of who is to be updated, gets their stats, and checks what mode the user wants to be

displayed. The modes are currently controlled through a regular enum in toggle_options.h

Future plans can be to extend this system to allow the user to script their own format to be

displayed with what they want. This technique still holds on multiplayer, as shown by the

Multiplayer note: The hooking technique posted below is detectable by Voobl

part 1 for suggestions on bypasses.

Usage: Enter a game and hit the hotkey to enable (default is F5). Use F6 to disable the hack, F7

to toggle options, and F8 to clear the stat list in case all names were not retrieved. A player is

added to the list when they perform any action in game that modifies their resources. Duplicates

are not stored in the list.

I'd prefer for the hack to develop through a series of articles instead of opening up a SVN server

on here since that will give me motiv

The source for the in-game hack DLL can be found

A downloadable PDF of this post can be found

The hooking technique posted below is detectable by Voobly. See the end of

part 1 for suggestions on bypasses.

Enter a game and hit the hotkey to enable (default is F5). Use F6 to disable the hack, F7

to toggle options, and F8 to clear the stat list in case all names were not retrieved. A player is

to the list when they perform any action in game that modifies their resources. Duplicates

I'd prefer for the hack to develop through a series of articles instead of opening up a SVN server

on here since that will give me motivation to continue its development.

game hack DLL can be found here.

A downloadable PDF of this post can be found here.

y. See the end of

Enter a game and hit the hotkey to enable (default is F5). Use F6 to disable the hack, F7

to toggle options, and F8 to clear the stat list in case all names were not retrieved. A player is

to the list when they perform any action in game that modifies their resources. Duplicates

I'd prefer for the hack to develop through a series of articles instead of opening up a SVN server

