These next series of posts will focus on explaining a file infector/encrypter that I wrote a week
ago or so. It works with any PE32 executable file, overcomes issues with randomized base
addresses, and takes advantage of Visual Studio's C++ compiler to generate the assembly code to
inject into the target. This allows for large portions of the injected code to be written in C and
greatly speeds up development time. Lastly, the target file is also encrypted by the infector and
the decryption routine is written in to decrypt the file image at runtime. The series will be broken
up into the four parts listed below:

Background

PE file modification/section injection
Writing the compiled stub

Full source code and remarks

el NS

Since this post will focus on the background of the project, there will be no (relevant) code
contained in it. This post will discuss the high level concepts involved behind the infector, issues
that arise while developing something like this, and provide an overview of the architecture of
the infector. The usual warnings come with this article such as using it only to enhance your
knowledge and to not be a script kiddie and rip the code to spread malware.

A file infector is simply an application that adds code to another process in hopes of executing
that code. This code can itself be an infector which continues to spread to other files, or it can
just be an arbitrary block of code with some defining purpose. Simply introducing code to a file
is not enough though, as the normal control flow of the target process would never invoke it.
Therefore, there are two main options: parts of the target file can be overwritten with a jump to
the code, usually called a code cave. This includes variations such as writing itself into a
subroutine and jumping to a block containing parts of the original code. The other option is to
hijack the entry point the target file and modify it so the process starts up and immediately
executes the desired code. The two techniques are illustrated below:

AE4152AC| . BE FFA@EREE | MOU ERx, BFF
aE415381) > ESZ SFE28ARA | CALL Dbowview.B841Ac45
[A64 152RE]

. RETH
% E2 C4Ca8aEE CALL Dbguisw.BR421428
aE4153BC(.~E9 FSFEFFFF JMP Dbgwicw. BE415239

ae4152C1 \r¥ SBFF Mow EDILEDI
aE4153C3 . 55 FUSH _EEFP
aE4152C4)| . 3BEC MO EEF, ESF
aE4153cell . 51 PUSH ECX

The original control flow of an application

GE4152E1| 3 ES SFSOBEEE | CALL Dbawiew.B@41A545
e 1 GEEE [RETH

~E2 Z1EGE10E JMP Dbgwiew. BE42233ED
ae4152eC) ~E9 VEFEFFFF JHP Dbguiew. 88415239

aE4153C1 |\ rs 3BFF MoW EDILEDI

aa4153C3] . 55 FUSH _EEFP

aE4152C4)| . 3BEC MO EEF, ESF

@E4153CE|] . &1 PUSH ECX

BE4153C7 || . 56 PUSH ESI

BE4153C2)] . 8BTS 8C MOU ESI,DWORD PTR S5:[EEBP+C]

The hijacked version, with a jump to what was an empty part of the process, but now would
contain instructions to execute

BE42223ER S]] OB @&

BE4223ER S]] OB @&

BE4223EC S]] OE G&

BE4233E0, > &6 FUSHAD

BE4222EE| . SH B8 FUSH &

BE4333F8 &H &8 FUSH @

BE4333F2 653 BA344388 | PUSH Dbguiew.88433468H
BE4322F 7 &H @8 FUSH @

BE42233F9) . E2 28C9BEYE | CALL USER2Z.HMeszageBoxA
BE4223FE| . 61 FOPAD

BE4223FF EZ2 FCEBFEFF |CALL Dbguiew.B8421480
ga4z2484) .~E? BZIFFEFF | JMP Dbaview.B84153BC
BE4334839 1] OB @&

BE4 33480 43 65 6C 6C &l ASCII "Hello Worldt™.@
BE432417 S]] OB @&

BE422412 1] OB @&

BE422419 S]] OB @&

BE422341R S]] OB G&

Sty le = MB_OKIME_APFLHODAL
Title = MULL

Tert = "Hello Worldt™
hOwner = HULL

MessageBonA

The added instructions to be executed. The overwritten code is restored at the end and a jump
returns control flow back to normal.

The other mentioned technique, modifying the entry point:

-

[PE Editor] -

B asziz PE Header Infarmation

ak.
EntryPoint: 230 ¢ «ystem: Iw J
ImageB ase: 00400000 MumnberDfSections: aon4
Size0fimage: lm TimeD ateStamp: 48E 437EF Sections
BazelfCode: | 00007000 Size0fHeaders: ooooo4o00 ﬂJ Directaries
BaselfD ata: 00034000 Characteristics: mo3 J FLC
Sectiondlignment: Im Checksum: 0007 73BE ﬂ

TDSC

FileAlignment: 00000200 Size0f0ptionalH eader: D0DED =
Magic: 0108 NumOfRvatndSizes: | 00000010 + | | ormpare

i

The entry point is an offset from the image base and denotes where the program begins
execution. It is possible to take control of the application by modifying the entry point to point to
the added code block, then jumping from the added code block to the original entry point. One
thing to note though is that the ImageBase value is not always reliable, since applications linked
with /pynamMICcBASE in Visual Studio (or whatever appropriate linker flag with different
compilers) will have a "randomized" base address. This means that the jump back into the
original entry point cannot have a hardcoded address (0x00400000 + 0x000153B7 in this case),
but instead needs to be found by the injected code at runtime.

The next issue arises when the injected code wants to call any Windows API functions. Load
addresses of kernel32.dll, ntdll.dll, and user32.dll are not guaranteed to always be the same, and
DLLs such as Ws2_32.dll, Shlwapi.dll, and so on are not even guaranteed to be loaded. This
means that call addresses to the Windows API cannot be hardcoded, and it also means that
additional DLLs may have to be loaded in order to be their functionality. The good news it that
since kernel32.dll is loaded into every process, its load added can be obtained from the process
environment block (PEB). Then the export address table (EAT) of kernel32.dll can be walked
and the address of LoadLibrary can be obtained to load additional DLLs. All exported functions

in the DLL can be found through the function name table and through the usage of the function
and ordinal table to obtain the address (more on this in part 3).

The last issue is that functions in the C runtime cannot be used. Again, this issue arises because

of randomized base addresses -- the address of the desired function simply cannot be hardcoded
into the piece of code to be injected. This means that the functions will have to be implemented

in assembly. This really isn't too bad -- for my version I only implemented strlen and a variation
on strcmp, both needed when traversing the function name table.

The architecture of the infector has two main components: the injection function which will be
injected into the target, and the code to map the file to memory, add the code, modify the entry
point, and so on. The injection function will be entirely self contained, and written in C and
assembly. The C compiler will be leveraged to generate the assembly instructions that will be
injected into the target. At runtime, the infector will calculate the length of the injection function,
modify part of the function to insert the correct entry point offset, write the instructions into the
target file, and lastly modify the entry point of the target file to execute the function upon
loading. Lastly, the file will be encrypted. The role of the injection function is to decrypt the
contents at runtime and continue normal execution.

