
These next series of posts will focus on explaining a file infector/encrypter that I wrote a week 

ago or so. It works with any PE32 executable file, overcomes issues with randomized base 

addresses, and takes advantage of Visual Studio's C++ compiler to generate the assembly code to 

inject into the target. This allows for large portions of the injected code to be written in C and 

greatly speeds up development time. Lastly, the target file is also encrypted by the infector and 

the decryption routine is written in to decrypt the file image at runtime. The series will be broken 

up into the four parts listed below: 

1. Background 

2. PE file modification/section injection 

3. Writing the compiled stub 

4. Full source code and remarks 

Since this post will focus on the background of the project, there will be no (relevant) code 

contained in it. This post will discuss the high level concepts involved behind the infector, issues 

that arise while developing something like this, and provide an overview of the architecture of 

the infector. The usual warnings come with this article such as using it only to enhance your 

knowledge and to not be a script kiddie and rip the code to spread malware. 

A file infector is simply an application that adds code to another process in hopes of executing 

that code. This code can itself be an infector which continues to spread to other files, or it can 

just be an arbitrary block of code with some defining purpose. Simply introducing code to a file 

is not enough though, as the normal control flow of the target process would never invoke it. 

Therefore, there are two main options: parts of the target file can be overwritten with a jump to 

the code, usually called a code cave. This includes variations such as writing itself into a 

subroutine and jumping to a block containing parts of the original code. The other option is to 

hijack the entry point the target file and modify it so the process starts up and immediately 

executes the desired code. The two techniques are illustrated below: 

 

The original control flow of an application 

 

The hijacked version, with a jump to what was an empty part of the process, but now would 

contain instructions to execute 



 

The added instructions to be executed. The overwritten code is restored at the end and a jump 

returns control flow back to normal. 

The other mentioned technique, modifying the entry point: 

 

The entry point is an offset from the image base and denotes where the program begins 

execution. It is possible to take control of the application by modifying the entry point to point to 

the added code block, then jumping from the added code block to the original entry point. One 

thing to note though is that the ImageBase value is not always reliable, since applications linked 

with /DYNAMICBASE in Visual Studio (or whatever appropriate linker flag with different 

compilers) will have a "randomized" base address. This means that the jump back into the 

original entry point cannot have a hardcoded address (0x00400000 + 0x000153B7 in this case), 

but instead needs to be found by the injected code at runtime. 

The next issue arises when the injected code wants to call any Windows API functions. Load 

addresses of kernel32.dll, ntdll.dll, and user32.dll are not guaranteed to always be the same, and 

DLLs such as Ws2_32.dll, Shlwapi.dll, and so on are not even guaranteed to be loaded. This 

means that call addresses to the Windows API cannot be hardcoded, and it also means that 

additional DLLs may have to be loaded in order to be their functionality. The good news it that 

since kernel32.dll is loaded into every process, its load added can be obtained from the process 

environment block (PEB). Then the export address table (EAT) of kernel32.dll can be walked 

and the address of LoadLibrary can be obtained to load additional DLLs. All exported functions 



in the DLL can be found through the function name table and through the usage of the function 

and ordinal table to obtain the address (more on this in part 3). 

The last issue is that functions in the C runtime cannot be used. Again, this issue arises because 

of randomized base addresses -- the address of the desired function simply cannot be hardcoded 

into the piece of code to be injected. This means that the functions will have to be implemented 

in assembly. This really isn't too bad -- for my version I only implemented strlen and a variation 

on strcmp, both needed when traversing the function name table. 

The architecture of the infector has two main components: the injection function which will be 

injected into the target, and the code to map the file to memory, add the code, modify the entry 

point, and so on. The injection function will be entirely self contained, and written in C and 

assembly. The C compiler will be leveraged to generate the assembly instructions that will be 

injected into the target. At runtime, the infector will calculate the length of the injection function, 

modify part of the function to insert the correct entry point offset, write the instructions into the 

target file, and lastly modify the entry point of the target file to execute the function upon 

loading. Lastly, the file will be encrypted. The role of the injection function is to decrypt the 

contents at runtime and continue normal execution. 

 


