
Steganography is "the art or practice of concealing a message, image, or file within another

message, image, or file." The general premise is that your message is in plain sight, but obscured

by the fact that no one, except who you want, knows to look for it. An image file or a block of

text looks more unsuspecting than something like

03b062766c06092b6926f84ef0c41ad434fdfb327b6ee80c8fff87cefa09590f2212bb82b6b5

aa027a17529deadb99b206e580a3625f8784726d308bb9d7afa3e8cd97d83fb8f6ed1111c2ce

c4b64a60a5deca3bbaeba1b3241bb13718779ddaf01cd511f74c5ca59d1a51f11171cb9221cea9

ed6aad68fa73d22568899d328e

which is a 1024-bit RSA ciphertext. Steganography can be performed in countless ways -- from

modifying bits in files to using invisible ink to write a message on a physical canvas.

Steganography also has quite a history, going back to the times of ancient Greece. Herodotus

wrote about Histiaeus shaving the head of his most trusted slave and tattooing a message on the

slave's bald head. When the slave's hair regrew, the message would be concealed and the slave

could be sent off without having to conceal any physical evidence of a message. The receiving

end of the message (Aristagoras) would either know of the messages existence, or the slave

would be trusted to reveal it to him upon arrival. With the advent of the digital age,

Steganography can take advantage of technology and become more widespread. Images, text

documents, music files, or any seemingly common and innocent looking object can be taken

advantage of to conceal a message. This can then be transmitted over the internet to knowing

parties without anyone knowing -- unless they are specifically looking for it. The sheer size of

the internet makes steganographic messages very difficult (almost impossible?) to spot. Knowing

that there are messages buried within the billions of images, or files in general, on the internet

doesn't really provide any sort of start on how to get those images. Also, once a steganographic

message is found, it is very difficult to extract. If the message was not encoded naively, there is

not much of a starting point. The message can be encoded in a way to still pass a chi-square test

for randomness of bits so extracting a key or plaintext message would be difficult. The

steganographic message itself can be ciphertext which yields even further complications. As a

result, an analogue to cryptanalysis called steganalysis has been (and is being) developed to find

and extract steganographic codes. Most of the techniques rely on statistical analysis to find

unusual features in a message -- which may go on to yield how it was encoded and allow for the

original message to be deciphered.

I recently decided to make a program that would hide one image in another. This works by doing

a simple least significant bit substitution. The four least significant bits (LSBs) of every RGB

value in the source image would be substituted with the four most significant bits (MSBs) of the

hidden image. This takes advantage of the fact that the the four LSB values do not encode a large

range of colors -- their range is 0 to 15, as opposed to 16 to 255 of the remaining four bits. The

theory is then that you can take two pixels, line them up, and make a new pixel. This new pixel

has the four MSBs of the original image, but has its four LSBs replaced by the four MSBs of the

hidden image. This preserves most of the color range of the source image, and encodes the

important part of the hidden image. Thus,

Visually, the difference is very small, even at the pixel level. On a large scale, with the colors

blending together, a normal image and one that c

program that I originally wrote to do the simple LSB substitution technique produced these two

images.

Which one has the hidden message embedded inside?

The difference in color is extremely difficult to spot on this scope. No image artifacts are present

unless someone is specifically looking for them. At first glance, no one would know that a

message is hidden in one of those two images. Performing the bit extraction on the fo

images produces these two resulting images:

Quite a surprising difference. The results go back to the wide range that the four MSBs can

encode.

 + =

Visually, the difference is very small, even at the pixel level. On a large scale, with the colors

blending together, a normal image and one that contains a message is very difficult to spot. The

program that I originally wrote to do the simple LSB substitution technique produced these two

Which one has the hidden message embedded inside?

or is extremely difficult to spot on this scope. No image artifacts are present

unless someone is specifically looking for them. At first glance, no one would know that a

message is hidden in one of those two images. Performing the bit extraction on the fo

images produces these two resulting images:

Quite a surprising difference. The results go back to the wide range that the four MSBs can

Visually, the difference is very small, even at the pixel level. On a large scale, with the colors

ontains a message is very difficult to spot. The

program that I originally wrote to do the simple LSB substitution technique produced these two

or is extremely difficult to spot on this scope. No image artifacts are present

unless someone is specifically looking for them. At first glance, no one would know that a

message is hidden in one of those two images. Performing the bit extraction on the following two

Quite a surprising difference. The results go back to the wide range that the four MSBs can

A problem is that extraction is quite simple. An obfuscation technique that I decided to

incorporate into this was the use of magic squares. A magic square is an n x n matrix containing

integers whose sum across the rows, columns, and diagonals all equal the same value. For

example, the following magic square sums up to 65:

These squares are useful in that for odd numbered sizes there is a general formula to generate a

number m at row i and column j. This provides for a linear time algorithm as a function of size

and squares of any odd order can be quickly generated. Unfortunately, no formula exists for

generating an even numbered square, so I avoided using them for this project. Sidenote: there are

techniques to generate even squares in special forms. One of the interesting things about magic

squares is the number of unique squares. Excluding rotations and reflections of a square, the

number of unique square configurations is: 1, 0, 1, 880, 275305224, for n = 1 .. 5. For n >= 6

there is no known number of configurations. This provides an ample key space to choose from.

There are several ways that magic squares can be useful in steganography. Using a formula to

generate a base magic square provides a unique encryption key. Alternatively, a magic square

unique from the base square can be found and used as a key. This key can then be used to add a

layer of encryption to the hidden data. For example, let the tile below be a 3x3 subsquare of a

9x9 square. A magic square key can then be applied by continually tiling squares over box pixel

regions.

So the 9x9 square would be broken up into nine 3x3 squares and the exclusive-or operation

applied to the MSB of the hidden image. The same square can then be used when extracting the

hidden image. Alternatively, the square can be treated as a one dimensional array and each

element will act as an exclusive-or value for each pixel in the hidden image. Taking it even

further, the square can be continually rotated or reflected about axes so the key doesn't show as

much repetition, although these steps would also have to be encoded in the image unless the

same type of rotation/reflection takes place at each step. There are no shortage of possibilities for

unique usage of magic squares. One question may be that since only four bits per color are

stored, why use any sized square with values > 15 (0b1111). The answer is that these squares can

be extended to be used with any form of data

useful when more data can be stored

For simplicity, I chose to implement was a simple algorithm that tr

dimensional array and uses the four lowest bits of it as an XOR key against the MSBs of the

hidden image. The result of extracting the four MSBs without knowing the key of the hidden

image is shown below:

The result is significantly different without knowing the key. Extracting the four LSBs is not

enough to give much information about the source image. The size of the square also affects how

the resulting image will be viewed (which should be obvious). A longer key provides for more

distortion across the image. A key of length is equal to or greater than the data t

provide the best results. Below are the result with magic squares of n = 7, 13, 17, and 51.

be extended to be used with any form of data -- not just images. Larger sized squares might be

useful when more data can be stored -- perhaps at some block level instead of a byte level.

For simplicity, I chose to implement was a simple algorithm that treats a square as a one

dimensional array and uses the four lowest bits of it as an XOR key against the MSBs of the

hidden image. The result of extracting the four MSBs without knowing the key of the hidden

The result is significantly different without knowing the key. Extracting the four LSBs is not

uch information about the source image. The size of the square also affects how

the resulting image will be viewed (which should be obvious). A longer key provides for more

distortion across the image. A key of length is equal to or greater than the data to encrypt would

provide the best results. Below are the result with magic squares of n = 7, 13, 17, and 51.

not just images. Larger sized squares might be

perhaps at some block level instead of a byte level.

eats a square as a one

dimensional array and uses the four lowest bits of it as an XOR key against the MSBs of the

hidden image. The result of extracting the four MSBs without knowing the key of the hidden

The result is significantly different without knowing the key. Extracting the four LSBs is not

uch information about the source image. The size of the square also affects how

the resulting image will be viewed (which should be obvious). A longer key provides for more

o encrypt would

provide the best results. Below are the result with magic squares of n = 7, 13, 17, and 51.

Overall, the technique is really simple to implement and there shouldn't be stopping anyone from

using a simple XOR-based encryption for extra security, at the very least.

A copy of this post is available as a downloadable PDF

Overall, the technique is really simple to implement and there shouldn't be stopping anyone from

based encryption for extra security, at the very least.

A copy of this post is available as a downloadable PDF here.

Overall, the technique is really simple to implement and there shouldn't be stopping anyone from

