
Some prerequisite words: The networking code is aggressively optimized and this post will be

extremely difficult to comprehend without decent knowledge of assembly and following along in

a debugger. Below is my analysis of how a chat packet is constructed within the game, which

was analyzed on a running instance with OllyDbg. Also, the knowledge contained in post isn’t

necessarily needed for being able to forge packets across an established in-game connection.

The process begins by trying to find out where the game grabs the chat from. Logically, to build

a chat packet, there needs to be some chat. This should either be the starting point or near to the

starting point of building the chat packet to send. Techniques on finding out this starting point

are situational. For example, if the chat were entered directly from some input box, it might be

wise to breakpoint calls to GetDlgItemText or something similar and follow from there. For this,

I chose the approach of setting a breakpoint on sendto and following the call stack backwards.

The packet can be fully inspected on the call to sendto as shown below:

As an aside, this is also a

good place to test for things like data checksums or even possible exploits in the protocol.

Checking for data checksums is pretty easy — if one of those unknown fields in the packet is a

checksum, then modifying the data but keeping the checksum the same will make the receiving

client report an error and/or not display the chat. Since it was possible to modify the text and still

have it appear on the other side, you can conclude that no data checksum is present (or the

receiving code doesn’t check it). Additionally, modifying the length of the chat also allows the

chat to get through. This is more interesting because there actually is a checksum on the length

appended to the packets. Having looked over the recvfrom code, which won’t be discussed in

this post, I will just say that the checksum is not checked by the game. There are other things to

check for like overflows which can be invoked by setting the chat length to 0xFF and sending

chat greater than 0xFF in size to see if the game parses the packet correctly or not. Overall, I

didn’t find anything too interesting that didn’t solely cause my own instance (the one sending the

packets) of the game to crash.

Back on topic however, the call stack at sendto is shown below:

The goal is

to find out where the packet is built, so the best place to look is the furthest back. Checking

DPLAYX.6E2E6333 reveals the following data at [ESP+14]:

which shows a chat packet

containing the header. This means that it is necessary to check even further back. The next step is

to look at the call from DPLAYX.6E2DCBBA. The call is shown below:

6E2DCBAC 6A 01 PUSH 1

6E2DCBAE 57 PUSH EDI

6E2DCBAF 53 PUSH EBX

6E2DCBB0 FF75 14 PUSH DWORD PTR SS:[EBP+14]

6E2DCBB3 FF75 F8 PUSH DWORD PTR SS:[EBP-8]

6E2DCBB6 FF75 1C PUSH DWORD PTR SS:[EBP+1C]

6E2DCBB9 50 PUSH EAX

6E2DCBBA E8 74970000 CALL DPLAYX.6E2E6333

Setting a breakpoint on this shows that the fully built packet is stored in EBX. Tracing

backwards up the function, the chat is loaded into EBX by

6E2DCB1E 8B5D 18 MOV EBX,DWORD PTR SS:[EBP+18]

which means it’s necessary to go even further backwards since the packet is still fully built at

this point. OllyDbg isn’t too great at keeping track of call stacks when the function isn’t called

directly. Setting a breakpoint at the top of the function and checking the call stack showed that

nothing called it, which definitely is not correct. The easiest approach is to inspect the stack

manually for the point of return. When EBP is set up, the stack looks like the following:

That address

leads to the following function, with the call at 0x005D356D:

005D3540 /$ 8B91 10470000 MOV EDX,DWORD PTR DS:[ECX+4710]

005D3546 |. 33C0 XOR EAX,EAX

005D3548 |. 85D2 TEST EDX,EDX

005D354A |. 75 24 JNZ SHORT aoc1_-_C.005D3570

005D354C |. 8B5424 14 MOV EDX,DWORD PTR SS:[ESP+14]

005D3550 |. A1 84027900 MOV EAX,DWORD PTR DS:[790284]

005D3555 |. 52 PUSH EDX

005D3556 |. 8B5424 14 MOV EDX,DWORD PTR SS:[ESP+14]

005D355A |. 52 PUSH EDX

005D355B |. 8B5424 14 MOV EDX,DWORD PTR SS:[ESP+14]

005D355F |. 8B08 MOV ECX,DWORD PTR DS:[EAX]

005D3561 |. 52 PUSH EDX

005D3562 |. 8B5424 14 MOV EDX,DWORD PTR SS:[ESP+14]

005D3566 |. 52 PUSH EDX

005D3567 |. 8B5424 14 MOV EDX,DWORD PTR SS:[ESP+14]

005D356B |. 52 PUSH EDX

005D356C |. 50 PUSH EAX

005D356D |. FF51 68 CALL DWORD PTR DS:[ECX+68]

005D3570 C2 1400 RETN 14

This is beginning to lead in the right direction since the call is made directly from the game

instead of an additional library. Additionally, this function is only called when chat is to be sent.

All other ones prior to this were called when any packet was to be sent. The chat is loaded into

EDX at the following instruction:

005D355A |. 52 PUSH EDX

The packet is still fully built at this point, but the search is almost over. The problem and

approach are still the same, but now its been heavily isolated. The call stack from this point

should contain functions that deal with collecting data and constructing the appropriate packet,

instead of networking functions in the DirectPlay and Winsock libraries. Taking the same

approach as before and setting a breakpoint at the top of the function shows the following call

stack:

Looking at

0x005DC6720, one of the further functions down the call stack, begins to show some promise.

When this function is entered, the chat string is held in the EAX register. It can be modified and

the changes carry on through to the sendto function. This means that it’s not a function working

on a temporary copy of the buffer, but that it holds the “real” one that will be written into the

chat packet. This seems like a good starting point since there is no sign of any packet header

being built. Additionally, inspecting the other functions up the call stack from 0x005DC720

shows that some of them display debug messages dealing with packets and chat headers. This is

also a good sign that the real reversing should begin here.

What I personally prefer doing is following the code flow in OllyDbg then highlighting the

executed code path in IDA Pro. The assembly listings from IDA will be shown in the code

blocks to follow. The function starts at 0x005D6720:

.text:005D6720 ; int __stdcall send_normal(char *Str)

.text:005D6720 send_normal proc near ; CODE XREF:

sub_4FD360+BDFp

.text:005D6720 ; sub_5A6C90+154p ...

.text:005D6720

.text:005D6720 broadcast = dword ptr -0Ch

.text:005D6720 var_8 = dword ptr -8

.text:005D6720 var_4 = word ptr -4

.text:005D6720 Str = dword ptr 4

.text:005D6720

.text:005D6720 sub esp, 0Ch

.text:005D6723 mov eax, 59595959h

.text:005D6728 push esi

.text:005D6729 mov [esp+10h+broadcast], eax

.text:005D672D mov esi, ecx

.text:005D672F mov [esp+10h+var_8], eax

.text:005D6733 mov [esp+10h+var_4], ax

.text:005D6738 mov eax, [esi+10E4h] ; number of other

players in game

.text:005D673E test eax, eax

.text:005D6740 jnz short loc_5D6780

The first thing to notice is that no stack frame is set up. This is the beginning of a lot of incoming

optimized code. Everything function to come will not set up a stack frame and will work directly

relative to ESP. The next thing to notice is that the value 0×59595959 is moved into EAX, which

is then moved into [ESP+0x4]. Why 0×59595959? Looking back at the previous example

packets, there were eight bytes devoted to who can see the packet. These were set to either Y or

N depending on whether the target player is supposed to display the message or not. 0×59

happens to be the ASCII code for ‘Y’, so the beginning of this function sets up to send a message

to all players, i.e. the broadcast field in the packet will be YYYYYYYY (or 0×59 0×59 …

0×59). [ESI+0x10E4] holds the number of other players in the game. This is moved into EAX

and checked for zero. Assuming there is at least one additional player, the code jumps to

0x005D6780. The case where no other player is in game won’t be discussed in-depth except that

in that case no packets are sent and the text is only displayed on the screen. Continuing on at

0x005D6780 is the following block:

.text:005D6780 loc_5D6780: ; CODE XREF:

send_normal+20j

.text:005D6780 mov eax, [esp+14h]

.text:005D6784 mov edx, [esi+10E0h]

.text:005D678A lea ecx, [esp+10h+broadcast]

.text:005D678E push eax ; chat string

.text:005D678F push ecx ; broadcast audience

.text:005D6790 push edx ; player_index

.text:005D6791 mov ecx, esi

.text:005D6793 call sub_5D67A0

.text:005D6798 pop esi

.text:005D6799 add esp, 0Ch

.text:005D679C retn 4

.text:005D679C send_normal endp

Looking at this is just a matter of stepping over in OllyDbg. The function at 0x005D67A0 is

called with the player index, the broadcast audience, and the chat message as parameters. This

function is a bit longer and more complicated. The first block is shown below:

.text:005D67A0 ; int __stdcall sub_5D67A0(int player_index, int chat_message,

char *Str)

.text:005D67A0 sub_5D67A0 proc near ; CODE XREF:

.text:004A8961p

.text:005D67A0 ; sub_4A8970+5Bp ...

.text:005D67A0

.text:005D67A0 var_114 = byte ptr -114h

.text:005D67A0 var_113 = byte ptr -113h

.text:005D67A0 chat_length = dword ptr -108h

.text:005D67A0 var_104 = byte ptr -104h

.text:005D67A0 Dest = byte ptr -103h

.text:005D67A0 var_4 = byte ptr -4

.text:005D67A0 player_index = dword ptr 4

.text:005D67A0 chat_message = dword ptr 8

.text:005D67A0 Str = dword ptr 0Ch

.text:005D67A0

.text:005D67A0 sub esp, 114h

.text:005D67A6 xor eax, eax

.text:005D67A8 push ebx

.text:005D67A9 push ebp

.text:005D67AA mov ebp, ecx

.text:005D67AC push esi

.text:005D67AD mov ecx, [esp+120h+player_index]

.text:005D67B4 push edi

.text:005D67B5 mov ax, [ebp+12DCh] ; maximum number of

players

.text:005D67BC cmp ecx, eax

.text:005D67BE jbe short loc_5D67D2

This code will be tricky to go through because things will be referenced through EBP and ESP.

The important immediate thing to note is that EBP takes the value of ECX, which had ESI

moved into it prior to the function call. As usual, no stack frame is set up. All that this code does

is compare the index of the player sending the chat (stored in [EBP+0x12DC]) with the

maximum number of players allowed in the game. The error condition is that the player index is

greater than the maximum number allowed (e.g. player 9 is trying to send a message in an 8

player game). Assuming no error, the jump to 0x005D67D2 is taken. This is a pretty small block

which performs an unusual check:

.text:005D67D2 loc_5D67D2: ; CODE XREF:

sub_5D67A0+1Ej

.text:005D67D2 mov ebx, [esp+124h+Str]

.text:005D67D9 push ebx ; Str

.text:005D67DA call _atoi

.text:005D67DF mov esi, 1

.text:005D67E4 add esp, 4

.text:005D67E7 cmp [ebp+12DCh], si ; [ebp+12DCh] holds

number of players

.text:005D67EE mov edi, eax

.text:005D67F0 jb loc_5D6883

The purpose of the call to atoi is to check whether a taunt has been entered. Taunts are

represented in chat purely by numbers, so atoi will return non-zero if that is the case. The code

then continues to check whether more than one player is in the game. This is to determine

whether it’s necessary to build a packet or not. Assuming more than one player is in the game,

the jump to 0x005D6883 is not taken. A loop is then entered. The important parts of the loop are

reproduced below. These are the instructions that are executed when more than one player is to

receive some chat.

.text:005D67F6 loc_5D67F6: ; CODE XREF:

sub_5D67A0+DDj

.text:005D67F6 push esi ; begin loop to see

who is allowed to see message

.text:005D67F7 mov ecx, ebp

.text:005D67F9 call can_player_see

.text:005D67FE test eax, eax

.text:005D6800 jnz short loc_5D680E ; player allowed to

see message

.text:005D6802 push esi ; player number

.text:005D6803 mov ecx, ebp

.text:005D6805 call sub_5D9720

.text:005D680A test eax, eax

.text:005D680C jz short loc_5D686C

.text:005D680E

.text:005D680E loc_5D680E: ; CODE XREF:

sub_5D67A0+60j

.text:005D680E mov ecx, [esp+124h+chat_message] ; player

allowed to see message

.text:005D6815 cmp byte ptr [esi+ecx], 59h

.text:005D6819 jnz short loc_5D686C

.text:005D681B mov edx, dword_7912A0 ; jump not taken,

player allowed to see message

.text:005D6821 mov [esp+esi+124h+var_113], 59h ; allowed

flag

.text:005D6826 mov eax, [edx+424h]

.text:005D682C test eax, eax

.text:005D682E jz short loc_5D6871

.text:005D6871

.text:005D6871 loc_5D6871: ; CODE XREF:

sub_5D67A0+8Ej

.text:005D6871 ; sub_5D67A0+98j ...

.text:005D6871 xor eax, eax

.text:005D6873 inc esi ; see if next player

is allowed to see message

.text:005D6874 mov ax, [ebp+12DCh] ; maximum number of

players in game

.text:005D687B cmp esi, eax

.text:005D687D jbe loc_5D67F6 ; begin loop to see

who is allowed to see message

.text:005D6883

.text:005D6883 loc_5D6883: ; CODE XREF:

sub_5D67A0+50j

.text:005D6883 mov eax, [ebp+10E4h] ; total number of

players in game

.text:005D6889 test eax, eax

.text:005D688B jnz loc_5D6915

The can_player_see function at 0x005D96E0 just returns 1 or 0 depending on whether the player

can see the message. What this loop basically does is decide who is going to see this message.

The YYY…Y buffer that was passed in to this function gets modified here according to which

player can see the message. The following two instructions set the appropriate byte:

.text:005D6821 mov [esp+esi+124h+var_113], 59h ; allowed

flag

or

.text:005D686C mov [esp+esi+124h+var_113], 4Eh ; not

allowed flag

The loop continues for eight iterations, the maximum number of players in the game. Once this

loop is done, the part of the packet which will hold who can see the message is ready. Once the

loop exits, the following code blocks are executed:

.text:005D6883 loc_5D6883: ; CODE XREF:

sub_5D67A0+50j

.text:005D6883 mov eax, [ebp+10E4h] ; total number of

players in game

.text:005D6889 test eax, eax

.text:005D688B jnz loc_5D6915

.text:005D6915 ; --

.text:005D6915

.text:005D6915 loc_5D6915: ; CODE XREF:

sub_5D67A0+EBj

.text:005D6915 ; sub_5D67A0+164j

.text:005D6915 mov ecx, [ebp+10E0h]

.text:005D691B cmp [esp+ecx+124h+var_113], 59h

.text:005D6920 jnz short loc_5D6957 ; EDI holds chat

string

.text:005D6922 mov eax, [esp+124h+player_index]

.text:005D6929 mov edx, [ebp+12CCh] ; username sending

chat

.text:005D692F mov ecx, [ebp+18h]

.text:005D6932 push 0

.text:005D6934 push 0

.text:005D6936 push eax

.text:005D6937 shl eax, 7

.text:005D693A add edx, eax ; EDX holds username

.text:005D693C push ebx ; EBX holds chat

.text:005D693D push edx

.text:005D693E call sub_5E2780

.text:005D6943 mov eax, dword_78BF34

.text:005D6948 push ebx

.text:005D6949 push offset aLocalChatAddS ; "Local chat

add: %s"

.text:005D694E push eax

.text:005D694F call nullsub_1 ; debug function?

.text:005D6954 add esp, 0Ch

.text:005D6957

.text:005D6957 loc_5D6957: ; CODE XREF:

sub_5D67A0+180j

.text:005D6957 mov edi, ebx ; EDI holds chat

string

.text:005D6959 or ecx, 0FFFFFFFFh

.text:005D695C xor eax, eax

.text:005D695E repne scasb ; Calculates length of

string

.text:005D6960 not ecx

.text:005D6962 dec ecx ; ECX holds number of

characters

.text:005D6963 cmp ecx, 0FFh

.text:005D6969 jbe short loc_5D6972 ; Calculates length

of string again

There isn’t anything too special about this block. There is a call to 0x005E2780, which is a huge

and complicated function. Fortunately, it doesn’t do anything related to modifying the chat or

building a packet — so it doesn’t have to be analyzed. Other than that there is nothing going on

except for calculating the length of the string. This is compared against 0xFF, which is the

maximum number of characters allowed. Normal execution continues into the following blocks:

.text:005D6972 ; --

.text:005D6972

.text:005D6972 loc_5D6972: ; CODE XREF:

sub_5D67A0+1C9j

.text:005D6972 mov edi, ebx ; Calculates length of

string again

.text:005D6974 or ecx, 0FFFFFFFFh

.text:005D6977 xor eax, eax

.text:005D6979 repne scasb

.text:005D697B not ecx

.text:005D697D dec ecx

.text:005D697E

.text:005D697E loc_5D697E: ; CODE XREF:

sub_5D67A0+1D0j

.text:005D697E mov dl, byte ptr [esp+124h+player_index]

.text:005D6985 mov [esp+124h+chat_length], ecx ; Chat

length added to buffer

.text:005D6989 inc ecx

.text:005D698A lea eax, [esp+124h+Dest]

.text:005D698E push ecx ; Count

.text:005D698F push ebx ; Source

.text:005D6990 push eax ; Dest

.text:005D6991 mov [esp+130h+var_114], dl ; Player number

who sent message

.text:005D6995 call _strncpy

.text:005D699A mov ecx, [ebp+1E3Ch] ; 3?

.text:005D69A0 mov edx, [esp+130h+chat_length]

.text:005D69A4 add esp, 0Ch

.text:005D69A7 cmp ecx, 3

.text:005D69AA setz cl ; CL = 1

.text:005D69AD add edx, 16h

.text:005D69B0 push 0

.text:005D69B2 lea eax, [esp+128h+var_114]

.text:005D69B6 push edx ; Chat length + 0x16

.text:005D69B7 push eax ; Partial packet.

Contains chat flag, chat length, who is allowed to see, and message

.text:005D69B8 mov [esp+130h+var_104], cl

.text:005D69BC push 43h

.text:005D69BE push 0

.text:005D69C0 mov ecx, ebp

.text:005D69C2 mov [esp+138h+var_4], 0

.text:005D69CA call sub_5D7BC0

.text:005D69CF mov ecx, [ebp+1608h]

.text:005D69D5 mov esi, eax

.text:005D69D7 push offset aTxchat ; "TXChat()"

.text:005D69DC push esi

.text:005D69DD call sub_5DF900

.text:005D69E2 mov eax, esi

.text:005D69E4 pop edi

.text:005D69E5 pop esi

.text:005D69E6 pop ebp

.text:005D69E7 pop ebx

.text:005D69E8 add esp, 114h

.text:005D69EE retn 0Ch

.text:005D69EE sub_5D67A0 endp

Prior to entering this code block the packet buffer contains only who is allowed to see the

message. The actual packet buffer is stored relative to ESP and the data will be written directly

there. There are some parts that are difficult to analyze like magic values appearing out of

nowhere, i.e., [EBP+0x1E3C] holding the value of 3. These don’t affect understanding the code

too much unless they play some vital role in how the actual packet will be built (the value is a

flag parameter for a function, etc.). With the code above, the the CL register is set to 1 since 3 ==

3, and is written into the packet buffer. Fortunately, one beneficial thing about this optimized

code is that it’s easy to see where the packet is being built. The writes into [ESP+xx] hold the

buffer for the packet, which can be verified by inspecting it in the dump with OllyDbg. Checking

all places where this occurs and seeing what is being written, the packet will have the following

fields before entering the function at 0x005D7BC0: A field set to 0×1 (the CL value being

written in), who is allowed to see the chat, the chat message itself, and an additional special

value 0xDC. This value is always found in the same field and always has the same value. A view

of the packet from the dump is shown below:

The call to 0x005D7BC0

will add the remaining fields of the packet (the two supposed counter values, and fields marked

as unknown in the first post). Since this function is pretty big, I won’t duplicate the entire thing

here, but only relevant parts — this post is meant to be followed along with in a disassembler

after all. This function allocates a new block of memory and returns the entire packet to send

(excluding the fields added by DirectPlay’s networking code). The “second counter” bytes are

written in by the instructions listed below:

.text:005D7C1A loc_5D7C1A: ; CODE XREF:

sub_5D7BC0+39j

.text:005D7C1A push 0Ch ; unsigned int

.text:005D7C1C call ??2@YAPAXI@Z ; operator new(uint)

.text:005D7C21 mov edx, [esp+34h+arg_C]

.text:005D7C25 mov ecx, [ebp+4714h] ;time stamp

.text:005D7C2B mov edi, eax

.text:005D7C2D mov al, [ebp+1DD0h] ; 1

.text:005D7C33 add esp, 4

.text:005D7C36 add ecx, edx

.text:005D7C38 test al, al

.text:005D7C3A mov [esp+30h+Memory], edi

.text:005D7C3E mov [ebp+4714h], ecx ; 0x51E

.text:005D7C44 jz short loc_5D7C7A

.text:005D7C46 mov ecx, [ebp+1DA0h] ; Retrieve second

counter

.text:005D7C4C mov [edi+8], ecx ; Write value into

packet

.text:005D7C4F mov eax, [ebp+10E0h] ; player position

.text:005D7C55 mov ecx, [ebp+1DA0h] ; second counter

value

.text:005D7C5B mov [ebp+eax*4+1DE4h], ecx

.text:005D7C62 mov eax, [ebp+1DA0h] ; Get second counter

value

.text:005D7C68 inc eax ; Increment it for

next packet

.text:005D7C69 mov [ebp+1DA0h], eax ; Write new value

back in

.text:005D7C6F mov eax, 0Ch

.text:005D7C74 mov [esp+30h+var_20], eax

.text:005D7C78 jmp short loc_5D7C89

.text:005D7C89

.text:005D7C89 loc_5D7C89: ; CODE XREF:

sub_5D7BC0+B8j

.text:005D7C89 lea ecx, [eax+edx] ; size of header +

data

.text:005D7C8C cmp ecx, 0FA0h ; maximum packet size

.text:005D7C92 mov [esp+30h+var_1C], ecx ; write in full

size

.text:005D7C96 jbe short loc_5D7CB3

Again there are some magic values that seemingly appear out of nowhere. There are some more

familiar ones like [EBP+0x10E0], which was shown in previous functions as storing the player

index. The value of the counter is kept at [EBP+0x1DA0], which is written into the packet

through EDI. The timestamp bytes are also written in, which are apparently kept at

[EBP+0x4714]. The code in the second block just grabs the counter, writes it to the packet

buffer, and increments it for the next time it is used. The next block writes in the size of the

packet so far. This will be a check to make sure that the header and data do not exceed the

maximum length allowed for a chat packet. The next field is an unknown field that is written by:

.text:005D7CB3

.text:005D7CB3 loc_5D7CB3: ; CODE XREF:

sub_5D7BC0+D6j

.text:005D7CB3 xor eax, eax

.text:005D7CB5 mov byte ptr [edi+1], 0

.text:005D7CB9 mov byte ptr [edi], 0

.text:005D7CBC mov al, [ebp+1E74h] ; Number of players

.text:005D7CC2 mov ecx, [ebp+10C8h] ; 2?

.text:005D7CC8 lea ebx, [ebp+1DA8h] ; 4?

.text:005D7CCE add eax, ecx

.text:005D7CD0 mov [esp+30h+var_14], eax

.text:005D7CD4 mov [edi+4], eax ; 06 00 00 00 added

here

This writes in 06 00 00 00 to the packet, which comes from adding [EBP+0x10C8] and

[EBP+0x1DA8] together. Where these two things come from, I’m not entirely quite sure.

However, they remain constant across all packets regardless of size, player index, and so on, so

it’s not too important for being able to forge packets. The other counter value can be found at

.text:005D7D22 mov ecx, [esp+30h+var_14] ; Full packet

size

.text:005D7D26 push ecx

.text:005D7D27 mov ecx, ebp

.text:005D7D29 call sub_5D7B50

.text:005D7D2E mov [edi+1], al ; Counter value

.text:005D7D31 mov ecx, [ebp+1E3Ch] ; 3?

.text:005D7D37 cmp ecx, 5

.text:005D7D3A jz short loc_5D7D6C

.text:005D7D3C test al, al

.text:005D7D3E jnz short loc_5D7D6C

in the call to 0x005D7B50, which returns the counter byte. This can be seen here

.text:005D7B6F ; --

.text:005D7B6F

.text:005D7B6F loc_5D7B6F: ; CODE XREF:

sub_5D7B50+Cj

.text:005D7B6F mov al, byte ptr dword_790FAC ; Get

counter byte

.text:005D7B74 inc al ; Increment counter

byte

.text:005D7B76 cmp al, 0FFh ; Compare with max

allowed

.text:005D7B78 mov byte ptr dword_790FAC, al ; Write

value back

.text:005D7B7D jb short loc_5D7BA3

which just gets the byte, increments it, and resets it if it’s greater than 0xFF. The last important

block of code is shown below:

.text:005D7D6C

.text:005D7D6C loc_5D7D6C: ; CODE XREF:

sub_5D7BC0+17Aj

.text:005D7D6C ; sub_5D7BC0+17Ej

.text:005D7D6C mov eax, [esp+30h+var_1C] ; Full packet

size

.text:005D7D70 mov [edi], bl ; Packet type 60

.text:005D7D72 inc eax

.text:005D7D73 push eax ; unsigned int

.text:005D7D74 call ??2@YAPAXI@Z ; operator new(uint)

.text:005D7D79 mov ebx, eax ; Buffer size of the

packet header + data

.text:005D7D7B mov eax, [esp+34h+var_20] ; 0xC?

.text:005D7D7F mov ecx, eax

.text:005D7D81 mov esi, edi

.text:005D7D83 mov edx, ecx

.text:005D7D85 mov edi, ebx

.text:005D7D87 shr ecx, 2

.text:005D7D8A rep movsd ; Packet minus session

key is written here

.text:005D7D8C mov ecx, edx

.text:005D7D8E add esp, 4

.text:005D7D91 and ecx, 3

.text:005D7D94 mov [esp+30h+var_10], ebx

.text:005D7D98 rep movsb

.text:005D7D9A mov ecx, [esp+30h+arg_C]

.text:005D7D9E test ecx, ecx

.text:005D7DA0 jz short loc_5D7DB7

Prior to entering this block, the packet is fully built. This is responsible for creating the buffer for

the full packet to send and copying the contents in there. There’s not much more to it at this

point. Looking down the function, it will call into another function which in turn calls into

DirectPlay (seen earlier in this post).

The entire explanation has basically been following across the call stack and seeing how the chat

input is transformed from it’s initial stage into a fully built packet. The specific knowledge

gained may not have been too great — there are still those unknown fields — however, it was

useful to see that there are special checksums or integrity checks performed on the data which

will go in to the packet. Also, it was possible to learn how those counters in the packet function,

how their values change, and if their values have any effect on how data will be transmitted. I

don’t expect this explanation to be incredibly clear since it was written over a period of a few

days, but these are some notes that I wanted to publish online both for my records and as a

demonstration of how difficult and confusing it can be to even reverse one specific type of

packet in a protocol. Unfortunately, the code is extremely optimized so this post may not serve as

a great starting point into reversing protocols altogether, but the general idea should be the same

of finding out where and how certain input is transformed into a transmittable packet.

