
Some good references to read prior to this post. In short, to use hardware breakpoints there are

eight debug registers (DR0 to DR7) that can be utilized. Eight, however, is a bit of an

overstatement — DR4 and DR5 are no longer used and their functionality is replaced with DR6

and DR7, so there are really six. The debug registers DR0 – DR3 can each hold a linear address

to break on depending on how the debug control (DR7) register is set. The debug status (DR6)

register lets a debugger determine which debug conditions have occurred. Therefore, you are

permitted four addresses to set hardware breakpoints on (assuming that they’re not being chained

across threads). What is the utility of these breakpoints? For one, they don’t modify the code that

breakpoints are hit on. This is especially useful in the context of defeating simple anti-debugging

mechanisms that check function prologues for hooks. All that is required is to install a run-time

exception handler and set up hardware breakpoints in the context of the applications main thread,

or the thread that is executing the desired code to break on. This can be done with Windows

Structured Exception Handling capabilities. Structured Exception Handlers (SEHs) in Windows

are stored as a linked list. When an exception is raised, this list is traversed until a handler for the

exception is found. If one is found then the handler gains execution of the program and handles

the exception. If one is not found then the application goes into an undefined state and may crash

depending on the type of exception. Vectored Exception Handler (VEHs) are extensions of SEH

that can be installed to watch and handle all exceptions that an application generates. In an

application, VEHs are typically added through AddVectoredExceptionHandler instead of

__try/__except blocks like SEH. This, however, is pretty irrelevant in terms of hack

development — both SEHs and VEHs should be added at runtime. The main benefit that VEHs

have is that they are always invoked prior to SEHs (being a “new” feature included in WinXP),

and that AddVectoredExceptionHandler lets you specify whether you want your exception

handler to be the first one to be called when an exception is raised. This leads most people to

prefer VEHs over SEHs nowadays.

To illustrate SEH/VEH I’ve developed a sample application. An injected DLL will install SEH

and VEH handlers that will break upon entry to a certain function (whose address is noted in the

dialog field for convenience). The goal is to break on the function that takes the text in the

enabled edit control and puts it in the disabled edit control following “Current Text:”.

The code for all of this is relatively straightforward. The full listing using SEH is shown below:

#include <Windows.h>

#include <TlHelp32.h>

#include <stdio.h>

const DWORD func_addr = 0x00401000;

const DWORD func_addr_offset = func_addr + 0x1;

void print_parameters(PCONTEXT debug_context) {

 printf("EAX: %X EBX: %X ECX: %X EDX: %X\n",

 debug_context->Eax, debug_context->Ebx, debug_context->Ecx,

debug_context->Edx);

 printf("ESP: %X EBP: %X\n",

 debug_context->Esp, debug_context->Ebp);

 printf("ESI: %X EDI: %X\n",

 debug_context->Esi, debug_context->Edi);

 printf("Parameters\n"

 "HWND: %X\n"

 "text: %s\n"

 "length: %i\n",

 (HWND)(*(DWORD*)(debug_context->Esp + 0x4)),

 (char*)(*(DWORD*)(debug_context->Esp + 0x8)),

 (int)(*(DWORD*)(debug_context->Esp + 0xC)));

}

void modify_text(PCONTEXT debug_context) {

 char* text = (char*)(*(DWORD*)(debug_context->Esp + 0x8));

 int length = strlen(text);

 _snprintf(text, length, "REPLACED");

}

void __declspec(naked) change_text_stub(void) {

 __asm {

 push ebp

 jmp [func_addr_offset]

 }

}

LONG WINAPI ExceptionFilter(PEXCEPTION_POINTERS ExceptionInfo) {

 if(ExceptionInfo->ExceptionRecord->ExceptionCode ==

EXCEPTION_SINGLE_STEP) {

 if((DWORD)ExceptionInfo->ExceptionRecord->ExceptionAddress ==

func_addr) {

 PCONTEXT debug_context = ExceptionInfo->ContextRecord;

 printf("Breakpoint hit!\n");

 print_parameters(debug_context);

 modify_text(debug_context);

 debug_context->Eip = (DWORD)&change_text_stub;

 return EXCEPTION_CONTINUE_EXECUTION;

 }

 }

 return EXCEPTION_CONTINUE_SEARCH;

}

void set_breakpoints(void) {

 HANDLE hTool32 = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);

 if(hTool32 != INVALID_HANDLE_VALUE) {

 THREADENTRY32 thread_entry32;

 thread_entry32.dwSize = sizeof(THREADENTRY32);

 FILETIME exit_time, kernel_time, user_time;

 FILETIME creation_time;

 FILETIME prev_creation_time;

 prev_creation_time.dwLowDateTime = 0xFFFFFFFF;

 prev_creation_time.dwHighDateTime = INT_MAX;

 HANDLE hMainThread = NULL;

 if(Thread32First(hTool32, &thread_entry32)) {

 do {

 if(thread_entry32.dwSize >= FIELD_OFFSET(THREADENTRY32,

th32OwnerProcessID) + sizeof(thread_entry32.th32OwnerProcessID)

 && thread_entry32.th32OwnerProcessID ==

GetCurrentProcessId()

 && thread_entry32.th32ThreadID != GetCurrentThreadId()) {

 HANDLE hThread = OpenThread(THREAD_SET_CONTEXT |

THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION,

 FALSE, thread_entry32.th32ThreadID);

 GetThreadTimes(hThread, &creation_time, &exit_time,

&kernel_time, &user_time);

 if(CompareFileTime(&creation_time,

&prev_creation_time) == -1) {

 memcpy(&prev_creation_time, &creation_time,

sizeof(FILETIME));

 if(hMainThread != NULL)

 CloseHandle(hMainThread);

 hMainThread = hThread;

 }

 else

 CloseHandle(hThread);

 }

 thread_entry32.dwSize = sizeof(THREADENTRY32);

 } while(Thread32Next(hTool32, &thread_entry32));

 (void)SetUnhandledExceptionFilter(ExceptionFilter);

 CONTEXT thread_context = {CONTEXT_DEBUG_REGISTERS};

 thread_context.Dr0 = func_addr;

 thread_context.Dr7 = (1 << 0);

 SetThreadContext(hMainThread, &thread_context);

 CloseHandle(hMainThread);

 }

 CloseHandle(hTool32);

 }

}

int APIENTRY DllMain(HMODULE hModule, DWORD reason, LPVOID reserved) {

 if(reason == DLL_PROCESS_ATTACH) {

 DisableThreadLibraryCalls(hModule);

 if(AllocConsole()) {

 freopen("CONOUT$", "w", stdout);

 SetConsoleTitle(L"Console");

 SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),

FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE);

 printf("DLL loaded.\n");

 }

 set_breakpoints();

 }

 return TRUE;

}

The DLL entry point sets up a console for debugging purposes and sets the breakpoints. The

set_breakpoints function works by taking a snapshot of all threads on the system and iterating

through them until the threads of the target process are found. The thread with the earliest

creation time within the application is the main thread. The handle for this thread is kept so the

debug registers can be set up. Once the main thread is found, the actual SEH handler can be

installed. SetUnhandledExceptionFilter sets the ExceptionFilter function as the top-level

exception handler so it will be called prior to all others (but not prior to VEHs). The CONTEXT

structure is set up with ContextFlags being CONTEXT_DEBUG_REGISTERS, DR0 is set to the

desired address, and DR7 is set to a global enable level for the address in DR0. The CONTEXT

of the main thread is then set to this new context and the breakpoints are now active. When an

exception is raised, ExceptionFilter checks to see whether the exception occurred at the

desired address. If so, the exception is handled and now the context record (containing, among

other things, the values of all registers and flags when the breakpoint was hit). Since the function

sets up a standard BP-based frame, the parameters can all be retrieved through ESP (since the

stack frame was not set up yet when the breakpoint was hit). All registers and parameters can

then be inspected and/or modified as shown in print_parameters and modify_text. The

pictures below show how this looks at run-time:

An important thing to note in the code is the need of the stub function. This stub function

contains the first instruction of the function that has the breakpoint on it. Then it jumps one byte

past the breakpoint address, where the next instruction starts. This is needed because if EIP is not

modified, the exception will be raised again once the handler finishes and an infinite loop will

occur. Making a stub function is a quick workaround to that problem. That is pretty much all to it

in terms of SEH. Removing the breakpoints is as simple as clearing the debug registers in the

main thread (not shown in the code for simplicity).

The technique does not differ much for VEH. To use VEH instead of SEH, only the following

modifications need to be made:

Change (void)SetUnhandledExceptionFilter(ExceptionFilter); to

(void)AddVectoredExceptionHandler(1, ExceptionFilter);. The VEH can be removed

by clearing the debug registers and calling RemoveVectoredExceptionHandler. An important

thing to note is that AddVectoredExceptionHandler returns a handle to the exception handler

that I chose to ignore for the sake of showing the technique and saving space. However, this

return value is needed if the handler is to be removed at a later time since

RemoveVectoredExceptionHandler requires it.

Code and sample application for SEH/VEH can be found here

A downloadable PDF of this post can be found here

